Conceptual equivalence for contrast mining in classification learning
نویسندگان
چکیده
منابع مشابه
Conceptual equivalence for contrast mining in classification learning
Learning often occurs through comparing. In classification learning, in order to compare data groups, most existing methods compare either raw instances or learned classification rules against each other. This paper takes a different approach, namely conceptual equivalence, that is, groups are equivalent if their underlying concepts are equivalent while their instance spaces do not necessarily ...
متن کاملEquivalence Learning in Protein Classification
We present a method, called equivalence learning, which applies a two-class classification approach to object-pairs defined within a multi-class scenario. The underlying idea is that instead of classifying objects into their respective classes, we classify object pairs either as equivalent (belonging to the same class) or non-equivalent (belonging to different classes). The method is based on a...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data & Knowledge Engineering
سال: 2008
ISSN: 0169-023X
DOI: 10.1016/j.datak.2008.07.001